Parallel Optimization of Weld Design Based on Collective Decision-Making
DOI:
https://doi.org/10.57118/creosar/978-1-915740-01-4_3Keywords:
Collective decision-making, Parallel computing, Welding simulation, Non-consumable electrode welding, Inverse heat transfer problemAbstract
Non-consumable electrode welding is widely used in manufacture, construction and other areas. Despite progress in welding technology and the emergence of new methods of joining materials, non-consumable electrode welding is confidently occupying its niche in the production area. In this work we consider the problem of optimal design in non-consumable electrode welding based on the solution of the inverse heat transfer problem by means of parallel computations. Heat transfer problem is solved by finite difference method for orthogonal geometry in transient mode. Authors used their own program, called the “Welding engineer virtual workplace” which is developed in Matlab. In this work we present the basis for solving the inverse heat transfer problem and an algorithm of parallel searching for the optimal technological parameters of the non-consumable electrode welding. The final result of design is based on a collective decision-making approach.
References
E.A. Valdaitseva, G.A. Turichin, E.A. Norman, E.V. Zemlyakov, P.E. Malkin, “Metodika vybora rezhimov lazernoy svarki sredstvami LaserCAD” [Online]. Available: http://www.ilwt-stu.ru/upload/publications/11_2006.pdf
V.A. Erofeev, “Resheniye zadach optimizatsii tekhnologii na osnove komp'yuternogo modelirovaniya protsessa svarki,” Svarochnoe proizvodstvo, vol. 7, pp. 19–26, Jul 2003.
Y. Chang, A. Babkin, I. Babkin, “The challenges of the inverse problems solution in welding technology: a review and a practice,” Journal of Physics: Conference Series, vol. 1074, p. 012146, Oct 2018.
A.B. Murphy, et al., “A desktop computer model of the arc, weld pool and workpiece in metal inert gas welding,” Applied Mathematical Modelling, vol. 44, pp. 91–106, Apr 2017.
F.F. Chen, et al., “Model-based parameter optimization for arc welding process simulation,” Applied Mathematical Modelling, vol. 81, pp. 386–400, May 2020.
A.V. Batranin, R.A. Krektuleva, R.O. Cherepanov “Virtual'noye rabocheye mesto inzhenera-svarshchika (VRM),” Russian Federation Certificate 2010616487, September 30 2010.
R.A. Krektuleva, A.V. Batranin, “Razrabotka virtual'nogo rabochego mesta dlya podgotovki inzhenerov-svarshchikov,” in The 4th International Conference on Modern Problems of Mechanical Engineering, Tomsk, Russia , 2008, pp. 319–323.
R.A. Krektuleva, N.I. Nikiforov, G.K. Sukhinin, O.N. Bezhin, L.V. Gubenko, “Rezul'taty komp'yuternykh i naturnykh eksperimentov po vysokoskorostnoy kislorodnoy rezke metalla,” Avtomaticheskaya svakra, vol. 5, pp. 21–24, May 2000.
R.A. Krektuleva, Yu.N. Saraev, V.A. Kosyakov, “Matematicheskoye modelirovaniye tekhnologicheskikh protsessov impul'snoy argonodugovoy svarki neplavyashchimsya elektrodom,” Svarochnoe proizvodstvo, vol. 4, pp. 2–4, Apr 1997.
R.A. Krektuleva, A.V. Batranin, O.N. Bezhin, “Primeneniye programmnogo obespecheniya Meza dlya otsenki defektnosti svarnykh soyedineniy na stadii proyektirovaniya,” Svarka i diagnostika, vol. 2, pp. 36–42, May 2009.
H. Arora, R. Singh, G.S. Brar, “Thermal and structural modelling of arc welding processes: a literature review,” Measurement and Control, vol. 52, is. 7–8, pp. 955–969, Sep 2019.
R.M. Farias, P.R.F. Teixeira, L.O. Vilarinho, “An efficient computational approach for heat source optimization in numerical simulations of arc welding processes,” Journal of Constructional Steel Research, vol. 176 p. 106382, Jan 2021.
R.J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, Philadelphia: Society for Industrial and Applied Mathematics, 2007.
Y. Jaluria, K.E. Torrance, Computational heat transfer, 2nd ed. New York: Routledge, 2017.
J.H Lienhard IV, J.H. Lienhard V, Heat transfer textbook, 5th ed. Cambridge, Massachusetts: Phlogiston press, 2020.
G. Sidebotham, Heat Transfer Modeling: An Inductive Approach, New York: Springer, 2015.
A.I. Akulov, G.A. Belchuk, V.P. Demyantsevich, Tekhnologiya i oborudovaniye svarki plavleniyem, Moscow: Mashinostroenie, 1977.
O.L. Mangasarian, Nonlinear programming, Philadelphia: Society for Industrial and Applied Mathematics, 1994.
J. Kang, et al., “Nonlinear programming strategies on high-performance computers,” in 54th IEEE Conference on Decision and Control, Osaka, Japan, 2015, pp. 4612-4620.
M. Avriel, "Nonlinear programming," in Mathematical Programming, New York: CRC Press, 2020, pp. 271-367.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © 2022 Creosar Publishing. All rights reserved.