Fuzzy Logic Traffic Light Control Model Using Arduino UNO Microcontroller

Authors

  • Sergey Gorbachev
  • Maxim Bobyr
  • Yang Yang
  • Fei Ding

DOI:

https://doi.org/10.57118/creosar/978-1-915740-01-4_12

Keywords:

traffic light, traffic density, fuzzy logic, control

Abstract

The chapter is devoted to modeling the traffic light control process based on fuzzy logic with the possibility of adjusting the time intervals of traffic light signals depending on the traffic situation. The definition of input variables for a fuzzy logic control system of an intelligent traffic light is performed using a vision system. The proposed method of controlling a traffic control device is based on a fuzzy inference system and contains several stages: determination of clear input variables, fuzzification of the values of input variables, aggregation of data based on fuzzy rules, defuzzification of values and determination of the delay time of the permitting traffic light signal. According to the proposed fuzzy model, an experimental layout based on the Arduino Uno controller has been developed, simulating the operation of an intelligent traffic light control system.  A specialized software model has been created, which has been patented ("A program for regulating traffic lights based on fuzzy logic"). The results of experimental studies have shown the high efficiency of the traffic light control model in the daily cycle. The model successfully copes with the estimation of the traffic density of cars and pedestrians, proportionally adjusting the operating time of traffic lights. The development and implementation of this model will ensure the safety and convenience of road traffic for all participants.

References

Roads and streets. Requirements for the operational condition permissible under the conditions of road safety, state standard of the Russian Federation R 50597-93, 1993.

N.Yu. Yakovenko, S.N. Yasenok, E.V. Nijelchenko, Upravlenie transportnimi potokami - konspekti lekcii, Belgorod: Izdatelstvo BelGU im. V.Ya. Gorina, 2020.

M. V. Bobyr, N. A. Milostnaya, “Analysis of the use of soft arithmetic operations in the structure of fuzzy logic inference,” Bulletin of Computer and Information Technologies, vol. 7, issue 133, pp. 7-15, Jan 2015.

M. D. Bachmanov, “Opit ispolzovaniya sovremennih transportnih detektorov v zadachah upravleniya transportnimi potokami,” Avtomobil. Doroga. Infrastruktura, vol. 2, issue 2, pp. 1-14, Dec 2014.

I.A. Evstigneev, Osnovi sozdaniya intellektualnih transportnih sistem na avtomobilnih dorogah federalnogo znacheniya Rossii, Moskva: Izdatelstvo “Pero”, 2016.

M. V. Bobir, S. A. Kulabuhov, “Modelirovanie processa upravleniya temperaturnim rejimom v zone rezaniya na osnove nechetkoi logiki,” Problemi mashinostroeniya i nadejnosti mashin, vol. 3, pp. 76-82, Mar 2017.

E. A. Kiseleva, A. A. Kraeva, Yu. S. Savinova, “Obzor nechetkoi logiki v upravlenii,” Integral: Mejdunarodnii jurnal prikladnih nauk i tehnologii, vol. 3, pp. 1-5, Mar 2019.

M. V. Bobyr, A. S. Yakushev, A. A. Dorodnykh, “Fuzzy devices for cooling the cutting tool of a CNC machine, implemented on FPGA,” Measurement, vol. 152, p.107378, Feb 2020.

M. V. Bobyr, S. G. Emelyanov, “Nonlinear method of training neuro-fuzzy models for dynamic control systems,” Applied soft computing, vol. 88, issue C, p. 106030, Mar 2020.

C. Karakuzu, O. Demirci, “Fuzzy logic based smart traffic light simulator design and hardware implementation,” Applied soft computing, vol. 10, issue 1, pp. 66-73, 2010.

E. Bingham, “Reinforcement learning in the management of neurofusion traffic signals,” European Journal of Operational Research, vol.131, issue 2, pp. 232-241, Feb 2001.

C.-H. Chou, J.-S. Teng, “Fuzzy logic controller for traffic interchange signals,” Information Sciences, vol. 143, issue 1-4, pp. 73-97, June 2002.

V. S. Titov, M. V. Bobir, N. A. Milostnaya, “ASU prognozirovaniem tochnosti obrabotki detalei,” Avtomatizaciya v promishlennosti, vol. 4, pp. 3-4, 2008. № 4. S. 3_4. itov V.S., Bobyr M.V., Milostnaya N.A. “Automated control system predicting the accuracy of machining parts,” Automation in industry, vol. 4, pp. 3-4, Apr 2008.

A.A. Uskov, Sistemi s nechetkimi modelyami obektov upravleniya, Smolensk: SFRUK, 2013.

V. S. Titov, A. V. Besedin, M. V. Bobyr, “Sistema avtomaticheskogo upravleniya sledyaschimi privodami oborudovaniya s ChPU,” Russia Patent RU 27868 U1, February 20 2003.

V. N. Gridin, V. S. Titov, M. I. Trufanov, Adaptivnie sistemi tehnicheskogo zreniya, Moskva: Nauka, 2009.

V. G. Spicin, Razrabotka ekspertnih sistem na osnove pravil nechetkogo vivoda, Tomsk: Izdatelstvo TPU, 2011.

M. V. Bobir, S. A. Kulabuhov, “Matematicheskaya model dlya novogo metoda Defazzifikacii v strukture nechetkogo vivoda,” in Conf. Mehatronika, avtomatika i robototehnika, Novokuzneck, 2018, pp. 218-220.

M. V. Bobir, S. A. Kulabuhov, “Defazzifikaciya vivoda iz bazi nechetkih pravil na osnove metoda raznosti ploschadei,” Vestnik kompyuternih i informacionnih tehnologii, vol. 9, pp. 32-41, Sep 2015.

V. V. Likviyk, E. E. Kerre, “Defazzification: criteria and classification,” The system of fuzzy sets, vol. 108, issue 2, pp.159-178, Dec 1999.

A. Piegat, Fuzzy modeling and control, Heidelberg: Physics-Verlag, 2001.

P. T. Vuong, A. M. Madni, J. B. Vuong, “Implementation of VHDL for fuzzy logic controller,” in World Congress on Automation, WAC'06, Budapest, Hungary, 2006, pp. 1-8.

Arduino.ru. Official website of Arduino in Russia [Online]. Available: http://arduino.ru.

M. Collotta, L. L. Bello, G. Po, “A new approach to dynamic traffic light control based on wireless sensor networks and multiple fuzzy logic controllers,” Expert Systems with Applications, vol. 42, pp. 5403-5415, Mar 2015.

O. M. Olanrevaju, A. A. Obinii, S. B. Junaidi, “Fuzzy Logic Concept for Safety Driven Vehicle-Pedestrian Traffic Interaction,” International Journal of Computer Applications, vol. 167, issue 1, pp. 24-28, June 2017.

Published

2022-11-24

How to Cite

Gorbachev, S., Bobyr, M., Yang, Y., & Ding, F. (2022). Fuzzy Logic Traffic Light Control Model Using Arduino UNO Microcontroller. Artificial Intelligence Impressions, 1, 255–268. https://doi.org/10.57118/creosar/978-1-915740-01-4_12